Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
Energy Sources Part a-Recovery Utilization and Environmental Effects ; 45(1):542-556, 2023.
Article in English | Web of Science | ID: covidwho-2241090

ABSTRACT

The generation of personal protective equipment (PPE) waste due to the impact of COVID has increased multi-fold globally. In this study, pyrolysis of polyolefin-based PPEs was carried out using a bench-scale reactor of 2 kg per batch capacity. Thermogravimetric (TGA) analysis of face masks was carried out to identify the optimal parameters for the pyrolysis process. Different combinations of catalysts (ZSM-5 and montmorillonite), catalyst to feed ratio (2.5% and 5%), experiment duration (2 h and 3 h), and process temperature (450 degrees C and 510 degrees C) were tested to determine the maximum yield of the pyrolysis oil. The oil and char obtained from the pyrolysis of PPEs were analyzed for its gross calorific value (GCV), elemental analysis (CHNS), and chemical composition. Based on the experiments conducted, the optimum pyrolysis temperature, catalyst, catalyst to feed ratio, and batch time for maximum oil yield (55.9% w/w) were determined to be 510 degrees C, ZSM-5, 5%, and 2 hours, respectively. Oil was free of sulfur and had a calorific value of 43.7 MJ/kg, which is comparable to commercial diesel fuel and makes it a suitable alternative fuel for ships, boilers, and furnaces.

2.
Sustainability ; 14(2):747, 2022.
Article in English | ProQuest Central | ID: covidwho-1632570

ABSTRACT

Assessing the dynamics of Bhasan Char is very crucial, as the Government of Bangladesh (GoB) has recently selected the island as the accommodation of the FDMN. This article critically evaluates the spatiotemporal morphological variations due to erosion, accretion, and subsurface deformation of the island through multi-temporal geospatial and geophysical data analysis, groundwater quality-quantity, and also determines the nature and rate of changes from 2003 to 2020. This is the first study in this island on which multi-temporal Landsat Satellite Imagery and seismic data have been used with geospatial techniques with Digital Shoreline Analysis System (DSAS) and petrel platform, respectively. The analysis of satellite images suggests that the island first appeared in 2003 in the Bay of Bengal, then progressively evolved to the present stable condition. Significant changes have taken place in the morphological and geographical conditions of the island since its inception. Since 2012, the island has been constantly accreted by insignificant erosion. It receives tidally influenced fluvial sediments from the Ganges-Brahmaputra-Meghna (GBM) river system and the sedimentary accretion, in this case, is higher than the erosion due to relatively weaker wave action and longshore currents. It has gained approximately 68 km2 area, mostly in the northern part and because of erosion in the south. Although the migration of the Bhasan Char was ubiquitous during 2003–2012, it has been concentrated in a small area to the east since 2018. The net shoreline movements (NSM) suggest that the length of the shoreline enlarged significantly by around 39 km in 2020 from its first appearance. Seismic and GPS data clearly indicate that the island is located on the crest of a slowly uplifting low-amplitude anticline, which may result in a stable landform around the island. Based on the analysis of historical data, it has been assessed that the current configuration of Bhasan Char would not be severely affected by 10–15-foot-high cyclone. Therefore, FDMN rehabilitation here might be safer that would be a good example for future geo-environmental assessment for any areas around the world for rehabilitation of human in remote and vulnerable island. The findings of this research will facilitate the government’s decision to rehabilitate FDMN refugees to the island and also contribute to future research in this area.

3.
Energies ; 14(24):8421, 2021.
Article in English | ProQuest Central | ID: covidwho-1594250

ABSTRACT

Plastic waste generation has increased dramatically every day. Indiscriminate disposal of plastic wastes can lead to several negative impacts on the environment, such as a significant increase in greenhouse gas emissions and water pollution. Therefore, it is wise to think of other alternatives to reduce plastic wastes without affecting the environment, including converting them into valuable products using effective methods such as pyrolysis. Products from the pyrolysis process encompassing of liquid, gas, and solid residues (char) can be turned into beneficial products, as the liquid product can be used as a commercial fuel and char can function as an excellent adsorbent. The char produced from plastic wastes could be modified to enhance carbon dioxide (CO2) adsorption performance. Therefore, this review attempts to compile relevant knowledge on the potential of adsorbents derived from waste plastic to capture CO2. This review was performed in accordance with PRISMA guidelines. The plastic-waste-derived activated carbon, as an adsorbent, could provide a promising method to solve the two environmental issues (CO2 emission and solid management) simultaneously. In addition, the future perspective on char derived from waste plastics is highlighted.

4.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1524116

ABSTRACT

Yields of carbonaceous char with a high surface area were enhanced by decreasing the temperature to improve the conversion of hazardous plastic polypropylene (PP), the major component in abundantly used isolation gowns. This study applied pyrolysis with different low pyrolytic temperatures to convert disinfected PP-based isolation gown waste (PP-IG) into an optimised amount of char yields. A batch reactor with a horizontal furnace was used to mediate the thermal decomposition of PP-IG. Enhanced surface area and porosity value of PP-IG derived char were obtained via an optimised slow pyrolysis approach. The results showed that the amount of yielded char was inversely proportional to the temperature. This process relied heavily on the process parameters, especially pyrolytic temperature. Additionally, as the heating rate decreased, as well as longer isothermal residence time, the char yields were increased. Optimised temperature for maximum char yields was recorded. The enhanced SBET values for the char and its pore volume were collected, ~24 m2 g-1 and ~0.08 cm3 g-1, respectively. The char obtained at higher temperatures display higher volatilisation and carbonisation. These findings are beneficial for the utilisation of this pyrolysis model in plastic waste management and conversion of PP-IG waste into char for further activated carbon and fuel briquettes applications, with the enhanced char yields, amidst the COVID-19 pandemic.

6.
Polymers (Basel) ; 13(11)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1244106

ABSTRACT

Slow pyrolysis using a batch reactor at 450 °C was applied to the polypropylene (PP) powder derived from Coronavirus Disease 2019 (COVID-19) isolation gown waste to yield char briquettes, using sugar palm starch (SPS) and a manual hydraulic press. These studies are significant because of reductions in plastic waste from the preparation of barbecue coal due to environmental sustainability. The results presented here include the physical, morphological, thermal, combustion, and mechanical properties of char when reinforced with various percentages of SPS loadings (0, 10, 20, 30, and 40%), which act as a matrix/binder to produce char/sugar palm starch (C/SPS) composites. The physical and morphological characteristics of C/SPS composites were determined using Fourier transform infrared (FTIR) and field emission scanning electron microscopy (FESEM). On the other hand, the thermal and combustion properties of the C/SPS briquettes were studied via thermogravimetric and bomb calorimeter analysis. The results show that the compressive strength of the briquettes increased as the SPS loading increased, whereas the higher heating values (HHV) reduced. The findings indicate that C-80/SPS-20 briquettes presented excellent combustion characteristics (1,761,430 J/g) with satisfactory mechanical strength (1.463 MPa) in the compression test. Thus, C-80/SPS-20 briquettes are the most suitable composites for domestic and commercial uses.

SELECTION OF CITATIONS
SEARCH DETAIL